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Introduction

Image classification has broad applications across many fields, from medical

diagnostics to retail in e-commerce. As the areas that can utilize machine learning image

classification models continue to grow, it is important to evaluate which models are most

effective and why. Convolutional Neural Networks (CNNs) are the most developed models

commonly used for image classification, and the architecture of these models determines the

quality of their predictions (geeksforgeeks, “Convolutional Neural Network (CNN) in

Machine Learning”). Therefore, this paper will evaluate which CNN architecture provides

better classification results.

I have chosen to examine LeNet-5 and AlexNet. LeNet-5, one of the earliest

convolutional neural networks, was developed in 1998 and is credited with laying the

foundation for modern CNNs (geeksforgeeks, “What Is LeNet?”). Due to its age, LeNet-5

features a simpler architecture compared to more recent models. Its simplicity makes it

effective in scenarios involving small datasets, which are prone to overfitting, and in

situations with limited computational resources. Tasks such as digit recognition using the

MNIST dataset, which contains digits from 0 to 9 and was employed during the development

of LeNet-5, and optical character recognition (OCR), used to identify characters and numbers

in scanned documents, are well-suited for LeNet-5 due to its efficient handling of datasets

with simple structures and low memory requirements. On the other hand, AlexNet,

introduced in 2012, represents a significant advancement in deep learning for image

classification (Tang et al.). It gained prominence for its performance in the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC), demonstrating the power of deeper and more

complex CNN architectures (Tang et al.). Its more intricate structure allows it to detect finer

details in images, such as texture, color, and resolution. This makes AlexNet suitable for

larger and more complex datasets, such as the X-ray medical images.
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By comparing LeNet-5 with AlexNet, this investigation will explore the trade-offs

between simpler and more complex CNN architectures. Specifically, I will examine their

ability to classify cat and dog images by analyzing training and validation accuracy. Although

neither model was originally designed for this task, evaluating their performance on this

dataset will offer insights into their adaptability to different inputs. The LeNet-5 and AlexNet

will be developed, and using 25,000 cat and dog images, the models' training and validation

accuracy will be recorded and compared to address the research question: "To what extent is

AlexNet better at classifying cat and dog images than LeNet-5 in terms of training and

validation accuracy?"
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Background Research

Machine Learning

Machine Learning (ML) is a type of artificial intelligence (AI) where computers learn

from data and improve their performance over time, similar to how humans learn from

experience (IBM, “What Is Machine Learning?”).

Neural Network

A neural network (NN) is a type of machine learning program that allows models to

make decisions similar to human biological neurons. It consists of nodes arranged in layers

including, the input layer receiving the initial data; the hidden layer processing the given

data; and the output layer producing the final result. Each node is connected to others and has

its own weight, bias, and threshold (IBM, “What Are Neural Networks?”).

Weights and biases are randomly assigned to nodes during the training. Then, a linear

combination of the inputs from the previous layer is computed by multiplying the inputs by

their corresponding weights and adding a bias term. After this, the activation function is used

to introduce non-linearity. The non-linearity allows the network to capture more complex

patterns in the data. The threshold determines if a node activates and sends data to the next

layer; if the node’s weight surpasses the threshold, it activates; otherwise, no data is passed

along. Higher weights indicate more important information, so this process can only pass the

important information (Lark Editorial Team).

This continues for every hidden layer, and the output layers produce the result. The

activation function is also used in the output layer to calculate the predicted output, and the

type of activation function depends on the classification that the model has to do. Finally, the

loss is calculated by calculating the difference between the predicted output and the true

target value. These processes are called forward propagation as the neural network passes the
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input data through the network to produce an output (geeksforgeeks, “What Is Forward

Propagation in Neural Networks?”).

After the forward propagation, backpropagation happens to reduce the error of the

prediction. The gradient of the loss is calculated with respect to each weight using the chain

rule. The calculated value indicates how much weight needs to change in order to reduce the

loss. The partial derivatives of the loss with respect to the weights and biases are calculated,

allowing the network to measure how each weight contributes to the error (geeksforgeeks,

“Backpropagation in Neural Network”).

With these values, the weights are adjusted in a way that can reduce the error with the

optimizers. The optimizers control how the model updates weights after backpropagation by

considering the speed of the learning. They modify the weights so they can produce the most

accurate predictions by reducing the loss efficiency (EITCA Academy).

The learning rate is a parameter in neural networks that determines the size of the

steps taken toward minimizing the loss in the direction of the gradient. A learning rate that is

too small can slow down the learning process, while one that is too high can cause the model

to overshoot the optimal weights, failing to converge. It is used with the optimizer to ensure

the network gradually improves its predictions (Raitoharju).

Deep Learning

Deep learning (DL) is a branch of machine learning that simulates the complex

decision-making abilities of the human brain through multi-layered neural networks, or deep

neural networks. Most of the AI we encounter in our daily lives is driven by deep learning in

some capacity (IBM, “What Is Deep Learning?”).
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Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of deep learning algorithm

designed for image identification. It consists of several layers inspired by the human brain’s

visual processing, making it effective at recognizing spatial connections and hierarchical

patterns in images (geeksforgeeks, “Convolutional Neural Network (CNN) in Machine

Learning”).

Convolutional Layer

The most important layer is the convolutional layer which is responsible for feature

extraction from input images. These layers apply convolutional operations using filters, or

kernels, to identify and highlight various patterns within the data (geeksforgeeks,

“Convolutional Neural Network (CNN) in Machine Learning”).

A kernel, a small matrix of weights, moves across the image in a process called

convolution. As it slides over different regions of the image, it analyzes sections known as

receptive fields. The filter’s size defines these receptive fields, determining the area of the

image being processed. At each position, the filter computes a dot product between its

weights and the image pixels in the receptive field. This computation results in a single value,

which is placed in the output array to create a feature map, highlighting the detected features

across the image (IBM, “What Are Convolutional Neural Networks? | IBM”). Figure 1

represents the calculation process of the feature map using the input layer and kernel.
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Fig. 1. Mohan, Brij. “TensorFlow 2: Convolutional Neural Networks (CNN) and Image
Classification.” TechBrij, 8 Jan. 2020.

The stride, or the number of pixels the filter shifts during each convolution step,

affects the size of the feature map. A smaller stride produces a more detailed map, while a

larger stride decreases the map size and computational effort (IBM, “What Are Convolutional

Neural Networks? | IBM”).

Padding adjusts image dimensions in CNNs. Zero-padding adds zeros around the

image to fit the filter and preserve spatial dimensions such as edge information. Valid

padding applies no extra pixels, potentially reducing output size. The same padding adds

pixels to keep output dimensions the same as the input. Full padding increases output size by

adding zeros around the image (IBM, “What Are Convolutional Neural Networks? | IBM”).

After convolution, an activation function is applied to the feature map. This

introduces non-linearity, allowing the network to capture complex patterns and relationships.

For example, the most common activation function is ReLU (Rectified Linear Unit), which

returns 0 for negative input values and the input value itself for positive inputs (Machine

Learning in Plain English). Figure 2 is the visual representation of the ReLU function.
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Fig. 2. Created by the candidate.

By converting negative values to 0, ReLU helps the network focus on important

features, making it more efficient and reducing the risk of overfitting. This abstraction allows

the network to generalize better across a broader range of images. Without this step, the

network would only perform linear transformations, limiting its pattern recognition

capabilities (Machine Learning in Plain English).

CNNs use multiple convolutional layers to detect features at different levels. Initial

layers identify basic features like edges, mid-level layers combine these to form complex

patterns, and deeper layers recognize high-level structures and objects. This hierarchy

improves the network's ability to understand and classify intricate details (IBM, “What Are

Convolutional Neural Networks? | IBM”).

Pooling Layer

The pooling layer, or downsampling layer, reduces dimension by minimizing the

number of parameters in the input. Unlike convolutional layers, pooling layers use filters

without weights; instead, they apply aggregation functions to values within each receptive

field. Common types of pooling include max pooling, which selects the maximum value from

each region, and average pooling, which calculates the average value. Although pooling

9



results in some loss of information, it simplifies the network, enhances efficiency, and helps

prevent overfitting (IBM, “What Are Convolutional Neural Networks? | IBM”).

Fully-connected Layer

The fully connected layer connects every neuron in the layer to every neuron in the

previous layer. This layer performs classification by applying matrix multiplication between

its weights and the activations from the previous layer, adding biases to the result. Figure 3 is

the representation of matrix multiplication with N elements in the input and T elements in the

output.

Fig. 3. Bendersky, Eli. “Backpropagation through a Fully-Connected Layer”
Thegreenplace.net, 31 May 2018.

The final output is then passed through an activation function, which converts the

result into a probability distribution. This is different from the activation function used to

introduce non-linearity during the training process. This process enables the network to make
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classification decisions based on the features extracted by the preceding layers (IBM, “What

Are Convolutional Neural Networks? | IBM”).

LeNet-5

Fig. 4. Saxena, Shipra. “Lenet-5 | Lenet-5 Architecture | Introduction to Lenet-5.” Analytics
Vidhya, 18 Mar. 2021.

LeNet-5 is one of the earliest CNN models, meaning that it has a simple architecture.

It consists of 7 layers, excluding the input layer. The information on each layer can be found

in Table 1.
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Table 1 Structure of the LeNet-5

Layer # of
kernels

kernel size stride Size of feature map Activation
function

Input 32 x 32 x 1

Conv 1 6 5 x 5 14 28 x 28 x 6 tanh

Avg Pool 1 2 x 2 2 14 x 14 x 6

Conv 2 16 5 x 5 1 10 x 10 x 16 tanh

Avg Pool 2 2 x 2 2 5 x 5 x 16

Conv 3 120 5 x 5 1 120 tanh

Fully Connected 1 84 tanh

Fully Connected 2 10 Sigmoid

Source: Saxena, Shipra. “Lenet-5 | Lenet-5 Architecture | Introduction to Lenet-5.” Analytics
Vidhya, 18 Mar. 2021, www.analyticsvidhya.com/blog/2021/03/the-architecture-of-lenet-5/.
Accessed 16 Sept. 2024.

AlexNet

AlexNet is CNN that won the Imagenet large-scale visual recognition challenge in

2012. Because of its increase in depth compared to LeNet-5, it is renowned for its

contribution to the advancement of CNN architectures. The information on each layer can be

found in Table 2.
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Table 2 Structure of the AlexNet

Layer # of
kernels

kernel size stride padding Size of feature map Activation
function

Input 227 x 227 x 3

Conv 1 96 11 x 11 4 55 x 55 x 96 ReLU

Max Pool 1 3 x 3 2 27 x 27 x 96

Conv 2 256 5 x 5 1 2 27 x 27 x 96 ReLU

Max Pool 2 3 x 3 2 13 x 13 x 256

Conv 3 384 3 x 3 1 1 13 x 13 x 256 ReLU

Conv 4 384 3 x 3 1 1 13 x 13 x 384 ReLU

Conv 5 256 3 x 3 1 1 13 x 13 x 384 ReLU

Max Pool 3 3 x 3 2 6 x 6 x 256

Dropout 1 Rate =
0.5

6 x 6 x 256

Fully
Connected 1

4096 ReLU

Dropout 2 Rate =
0.5

4096

Fully
Connected 2

4096 ReLU

Fully
Connected 3

1000 Softmax

Source: Saxena, Shipra. “Alexnet Architecture | Introduction to Architecture of Alexnet.”
Analytics Vidhya, 19 Mar. 2021,
www.analyticsvidhya.com/blog/2021/03/introduction-to-the-architecture-of-alexnet/.
Accessed 16 Sept. 2024.
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Differences between LeNet-5 and AlexNet

Input size preprocessing

The input layer of LeNet-5 is 32x32x1 which is smaller than the input layer of

AlexNet’s 227x227x3. The larger physical layer size allows to capture of more complex

patterns and details in the images. The larger input size is appropriate for detailed image

classification tasks. This allows AlexNet to be suitable for classifying a wide range of objects

(Klingler). On the other hand, considering that LeNet-5 was developed for the MNIST

dataset, which consists of handwritten digits ranging from 0 to 9, it might not be well-suited

for a more complex dataset that requires capturing subtle details.

Convolutional Layers

Convolutional layers exhibit hierarchical feature learning, meaning that each layer

extracts different types of features from the images. Earlier layers learn low-level features,

such as edges and textures, while deeper layers learn more abstract features, such as shapes

and objects. Consequently, having more convolutional layers allows the network to capture

finer details and higher-level representations of the data, which are crucial for distinguishing

subtle differences in complex datasets (Klingler). Since AlexNet has 5 convolutional layers, it

is assumed to capture more features of the images than LeNet-5, which has 3 convolutional

layers. This may result in better results for AlexNet.

Activation Functions

LeNet-5’s activation function is tanh function, defined as, , whichtanh(𝑥) =  𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

maps input values to a range between -1 and 1. is represented in Figure 5.tanh(𝑥)
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Fig. 5. Weisstein, Eric W. “Hyperbolic Tangent.” Mathworld.wolfram.com.

While the tanh(x) function helps center the data around zero, its gradient can become

very small for large positive or negative inputs, leading to the vanishing gradient problem

which happens due to a small gradient and slows the speed of learning. This issue can make it

harder for the network to learn effectively, especially in deeper networks. However, in

situations with a smaller number of inputs or simpler tasks, tanh(x) can still be beneficial by

providing a normalized output, which can make training more stable and efficient. It is

important to note that while tanh(x) can stabilize training in some contexts, it is generally

slower and less effective in deep networks compared to activation functions like ReLU

(EITCA Academy, “What Are the…”).

The activation function used in AlexNet is the ReLU (Rectified Linear Unit) function,

defined as ReLU(x)=max(0,x) in Figure 2. ReLU outputs zero for negative inputs and a linear

value for positive inputs. This helps address the vanishing gradient problem because the

gradient is either zero or a constant positive value, avoiding the issue of very small gradients

for positive inputs. As a result, ReLU allows models to converge faster during training by

providing stronger gradients for positive inputs, which accelerates the optimization process.
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Additionally, ReLU is computationally simple, involving only a comparison operation, which

contributes to faster computation (EITCA Academy, “What Are the…”).

Pooling Layers

LeNet-5 utilizes average pooling which calculates the average value of each patch.

This can dilute the influence of strong features since the pooling operation averages out the

function, so it may lose critical information. On the other hand, AlexNext employs max

pooling which selects the maximum value from each patch of the feature map. This helps

preserve the most significant feature detected in that region. By retaining the maximum

value, max pooling can better capture strong features, which are often crucial for

distinguishing important patterns in the data (Zhao and Zhang).

Fully Connected Layers

LeNet-5, an earlier architecture, features a simpler fully connected layer setup with

just a single dense layer of 84 neurons, followed by the output layer. This design is

well-suited for simpler datasets like digit recognition, where computational resources and

data complexity are limited (Saxena, “Lenet-5 | Lenet-5 Architecture | Introduction to

Lenet-5”).

In contrast, AlexNet employs a more complex architecture with three fully connected

layers, each containing 4096 neurons. To combat overfitting—where the model learns noise

and outliers from the training data, impairing its generalization—AlexNet uses dropout

layers. Dropout works by randomly deactivating neurons during training, preventing the

network from relying too heavily on any single neuron and promoting more robust learning

across the network. This design allows AlexNet to handle more complex and
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high-dimensional datasets, such as ImageNet, by capturing intricate patterns and enhancing

generalization (Saxena, “Alexnet Architecture | Introduction to Architecture of Alexnet”).
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Testing Method

Training Accuracy and Validation Accuracy

Training accuracy accesses how well the model fits the training data. This indicates

the proportion of correctly classified images out of the total number of images. During

training, the model keeps making predictions image by image, and the correct number of

predictions during the process is used to calculate the training accuracy. Too high training

accuracy might mean overfitting, so it is important to evaluate the training accuracy with

validation accuracy (Lehn).

Validation accuracy accesses the model’s generalization ability on new data. During

the training process, the validation accuracy is also calculated for each epoch with the

validation data (Lehn).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 × 100

The final training accuracy and final validation accuracy will be used to evaluate the

performance of the models. However, since training accuracy and validation accuracy are

calculated at each epoch, their trends can also be evaluated. Therefore, the trends will be

assessed to understand their performance better.
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Methodology

Environment

The experiments were conducted using Google Colab Pro+, which provides a

cloud-based environment with advanced computational resources. The runtime environment

utilized Python 3 and was equipped with a TPU v2 accelerator. The TPU v2, designed

specifically for high-performance tensor computations, significantly enhanced the efficiency

of both training and inference processes (Google Cloud). The Colab Pro+ platform, based on

a Linux environment, facilitated the use of Google Drive for seamless data management and

integration. TensorFlow framework, compatible with TPU v2, was employed to leverage the

computational power of the hardware (Google Cloud). This setup provided a robust

environment for executing complex models and ensured rapid processing capabilities

essential for deep learning tasks.

Data Set

It is important to have balanced data, meaning that the number of images for Category

1 and Category 2 should be nearly equal to ensure the accuracy of the model. Imbalanced

data can cause overfitting when a CNN is exposed to only certain categories, leading it to

memorize features rather than learn general patterns. This results in a model that performs

well on training data but poorly on new, unseen data because it has memorized the training

data, including its noise and outliers, rather than learning the underlying patterns. Therefore,

balancing the two categories is essential.

A dataset from Microsoft is used to train the model. It contains 25,000 images of dogs

and cats. Randomly, 4,001 cat images and 4,006 dog images were selected and used as

training data. A different set of 1,012 cat images and 1,013 dog images are randomly selected
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and used as validation data. The dataset is structured to maintain a balance between the two

data types: cats and dogs. The example images can be referred to Figure 6 and Figure 7.

Fig. 6. Microsoft. “Kaggle Cats and Dogs Dataset.” Microsoft Download Center, 5 Sept.
2022.

Fig. 7. Microsoft. “Kaggle Cats and Dogs Dataset.” Microsoft Download Center, 5 Sept.
2022.

Models

Keras API in TensorFlow is used to build CNN models. To build the model, images

are preprocessed, and the images are used to train the model.

While preprocessing the images to train the model, the ImageDataGenerator class

from Keras is used to generate batches of image data. This approach helps manage data size

by loading and processing only a small subset of the data at a time. Additionally, it facilitates
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data augmentation, which enhances the diversity and robustness of the dataset by applying

transformations such as rotation and shifting.

The rescale parameter normalizes pixel values to the range [0,1], which helps achieve

numerical stability and faster convergence during training. Parameters such as rotation_range,

width_shift_range, shear_range, zoom_range, and horizontal_flip are used to diversify the

dataset by applying transformations to each image. This allows the model to learn more

generalized patterns and helps prevent overfitting.

For the test data, only normalization is applied as the augmentation is not typically

performed on test data to ensure consistent evaluation.

Then, flow_from_directory method loads images from a training folder and applies

the specified data augmentation. The image size is adjusted to 32x32, which matches the

input layer size of the LeNet-5 model. A batch size of 32 is used because it balances memory

usage and provides stable model updates. This batch size is often selected to optimize

training speed and make effective use of hardware acceleration. Since the input layer will be

32x32x1, the color_mode is set to 'grayscale' to ensure it has only one channel. Given that the

model needs to classify two categories – cats and dogs – the class mode is set to binary.

The model is built using Keras's library. Convolutional layers, average pooling layers,

flatten layers, and dense layers of Keras models are used when building the LeNet-5 model.

LeNet-5 is developed, mimicking the general architecture described in Figure 5.

When convolutional layers are needed, Conv2D is used to process the images. For average

pooling layers, AveragePooling2D is utilized. Since flatten layer is necessary before the fully

connected layer, the flatten function is applied. For the fully connected layer, the dense layer

is used, as it represents the fully connected layer in Keras. For the last layer, the output layer

is set to 1 unit, which is different from the original LeNet-5 architecture. This design choice

is made to use the Sigmoid activation function, which requires the output layer to be set as 1.
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The model.compile method is used at the end to set up the model for training. The

optimizer with learning rate, loss function, and metrics must be chosen. For the optimizer, the

Stochastic Gradient Descent (SGD) optimizer is used in the original LeNet-5 function.

However, this LeNet-5 model utilizes the Adam optimizer due to time constraints. The Adam

optimizer is known for faster training during the early stages compared to the SGD optimizer.

Since AlexNet also utilizes SGD, Adam optimizer is used for AlexNet as well to keep it

consistent. For the loss function, binary cross-entropy is used because the model will be used

in binary classification. The matrix is set as accuracy because our testing method is to

compare the model’s accuracy.

With the function model.fit in the Keras, the LeNet-5 is trained. The images that are

processed in train_generator are used to train the model, and the test_generator is used the

validate the data. The model is trained with 20 epochs, which is sufficient training.

Similar methods are used for the AlexNet – the images are preprocessed, and the

images are used to train the model.

The image is preprocessed according to the input size of AlexNet. The attributes of

the ImageDataGenerator are the same as those used for LeNet-5 to maintain consistency.

However, for both train_generator and test_generator, the target_size is changed to (227,227)

to match the original AlexNet. categorical_mode is used for both train_generator and

test_generator. Even though AlexNet is also used to classify two categories, to use the

softmax activation function, it has to be a categorical_mode which is used for the

multi-classification.

In the build_alexnet function, AlexNet is developed with the same general

architecture as the original model. When the max pooling layer has to be used, the

MaxPooling2D function is used. Then, the dropout function is used for the dropout.
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The same optimizer and metrics as LeNet-5 are used to keep it consistent. For the loss

function, categorical_crossentropy is chosen because of the usage of the softmax as the

activation function, which requires categorical_crossentropy.

When the model is built and compiled, input_shape is set to (227,227,3), as defined

by the general architecture of AlexNet. Since it incorporates the softmax function,

num_classes is set to 2 for binary classification. To control both models, the number of

epochs is also kept at 20.

Experiment Result

Table 3 Results of the experiment, including the final training accuracy and final
validation accuracy for both LeNet-5 and AlexNet

LeNet-5 AlexNet

Final Training Accuracy 0.6488 0.8602

Final Validation Accuracy 0.6451 0.8443
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Fig. 7. Created by the candidate

Fig. 8. Created by the candidate
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Result Discussion

​​LeNet-5's lower training and validation accuracy compared to AlexNet highlights its

limitations in classifying cat and dog images. AlexNet's accuracy improves over time,

indicating effective learning as the epochs progress, whereas LeNet-5 shows little

improvement, suggesting its architecture is too simple for this task. With accuracy hovering

around 0.5, LeNet-5 struggles to classify the images effectively.

Input Size

AlexNet processes larger RGB images (227x227), allowing it to capture more

intricate features, while LeNet-5 handles smaller grayscale images (32x32). LeNet-5 was

originally designed for simpler datasets, such as digit classification, and its smaller input size

is insufficient to handle the complexity of images like cats and dogs.

Layer Structure

AlexNet has a deeper architecture with more convolutional layers, enabling it to

extract complex and abstract features. Its use of max pooling helps retain important details,

while LeNet-5’s average pooling tends to lose crucial high-level information. Additionally,

AlexNet’s two fully connected layers, with a higher number of nodes, allow for better

generalization. In contrast, LeNet-5’s single fully connected layer limits its ability to learn

detailed features.

Activation Function

AlexNet's use of ReLU prevents the vanishing gradient problem, speeding up

learning. Meanwhile, LeNet-5 relies on the Tanh function, which can slow training due to

smaller gradients, further hindering its performance.
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Conclusion

After building LeNet-5 and AlexNet and classifying cat and dog images through both

models, it is clear that AlexNet is better at classifying the images which is supported by its

high training and validation accuracy. This is because AlexNet utilizes a larger input size to

introduce various characteristics, deeper and better layers to capture more complex features,

and better activation functions which enhances the rate of learning. Through this process,

utilizing recent models allows for more accurate results. By enhancing the model, it seems to

be possible to classify more complicated data such as chest X-rays to determine the presence

of diseases.
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Evaluation

This experiment has several limitations. Due to time constraints, I could not replicate

the exact LeNet-5 and AlexNet architectures, particularly regarding the optimizer. I used the

Adam optimizer for faster training, while the original models used stochastic gradient descent

(SGD), which might have provided more accurate results.

The dataset size, though large at 25,000 images, is smaller than what modern CNNs

typically require for optimal performance. A larger dataset would likely have improved both

training and validation accuracy. Additionally, I only trained the models for 20 epochs, while

CNNs usually benefit from training over 100 epochs to fully converge. Longer training could

have produced more generalizable results.

Lastly, relying solely on training and validation accuracy gives a limited view of

performance. Metrics like precision, recall, and F1 score would offer deeper insights,

particularly in distinguishing between similar classes like cats and dogs. Including these

metrics would have provided a more comprehensive evaluation of the models.

To achieve more accurate results, I would address these limitations by increasing the

dataset size, training for more epochs, and incorporating metrics like precision and F1 score.
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Appendix

1. LeNet

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, AveragePooling2D, Flatten,
Dense, Dropout, Input, BatchNormalization
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import classification_report
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
import matplotlib.pyplot as plt

test_dir = '/content/drive/My Drive/CD/test_set/'
train_dir = '/content/drive/My Drive/CD/training_set/'

train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,

)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(32, 32),
batch_size=32,
color_mode='grayscale',
class_mode='binary'

)

test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(32, 32),
batch_size=32,
color_mode='grayscale',
class_mode='binary'

)

model = Sequential([
Input(shape=(32,32,1)),

Conv2D(6, (5, 5), activation='tanh', padding='same', strides=(1,
1)),

AveragePooling2D((2, 2), strides=(2, 2)),
BatchNormalization(),

Conv2D(16, (5, 5), activation='tanh', strides=(1, 1)),
AveragePooling2D((2, 2), strides=(2, 2)),
BatchNormalization(),
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Conv2D(120, (5, 5), activation='tanh', strides=(1, 1)),

Flatten(),

Dense(84, activation='tanh'),
Dense(1, activation='sigmoid')

])

model.compile(optimizer=Adam(learning_rate=0.0001),
loss='binary_crossentropy', metrics=['accuracy'])

history = model.fit(
train_generator,
epochs=20,
validation_data=test_generator

)

2. AlexNet

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten,
Dense, Dropout, Input, BatchNormalization
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import classification_report
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
import matplotlib.pyplot as plt

test_dir = '/content/drive/My Drive/CD/test_set/'
train_dir = '/content/drive/My Drive/CD/training_set/'

train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,

)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(227, 227),
batch_size=32,
class_mode='categorical'

)

test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(227, 227),
batch_size=32,
class_mode='categorical'

)

32



model = Sequential([
Input(shape=(227,227,3)),

Conv2D(96, (11, 11), strides=(4, 4), activation='relu',
input_shape=(227, 227, 3)),

MaxPooling2D(pool_size=(3, 3), strides=(2, 2)),
BatchNormalization(),

Conv2D(256, (5, 5), strides=(1, 1), activation='relu',
padding='same'),

MaxPooling2D(pool_size=(3, 3), strides=(2, 2)),
BatchNormalization(),

Conv2D(384, (3, 3), strides=(1, 1), activation='relu',
padding='same'),

Conv2D(384, (3, 3), strides=(1, 1), activation='relu',
padding='same'),

Conv2D(256, (3, 3), strides=(1, 1), activation='relu',
padding='same'),

MaxPooling2D(pool_size=(3, 3), strides=(2, 2)),
BatchNormalization(),

Flatten(),

Dense(4096, activation='relu'),
Dropout(0.5),

Dense(4096, activation='relu'),
Dropout(0.5),

Dense(2, activation='softmax')
])

model.compile(optimizer=Adam(learning_rate=0.0001),
loss='categorical_crossentropy', metrics=['accuracy'])

history = model.fit(
train_generator,
epochs=20,
validation_data=test_generator

)
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